YinYang atom: a simple combined ab initio quantum mechanical molecular mechanical model.

نویسندگان

  • Yihan Shao
  • Jing Kong
چکیده

A simple interface is proposed for combined quantum mechanical (QM) molecular mechanical (MM) calculations for the systems where the QM and MM regions are connected through covalent bonds. Within this model, the atom that connects the two regions, called YinYang atom here, serves as an ordinary MM atom to other MM atoms and as a hydrogen-like atom to other QM atoms. Only one new empirical parameter is introduced to adjust the length of the connecting bond and is calibrated with the molecule propanol. This model is tested with the computation of equilibrium geometries and protonation energies for dozens of molecules. Special attention is paid on the influence of MM point charges on optimized geometry and protonation energy, and it is found that it is important to maintain local charge-neutrality in the MM region in order for the accurate calculation of the protonation and deprotonation energies. Overall the simple YinYang atom model yields comparable results to some other QM/MM models.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Combined Quantum Mechanical and Molecular Mechanical Potential for Molecular Dynamics Simulations

A combined quantum mechanical (QM) and molecular mechanical (MM) potential has been developed for the study of reactions in condensed phases. For the quantum mechanical calculations semiempirical methods of the MNDO and AM1 type are used, while the molecular mechanics part is treated with the CHARMM force field. Specific prescriptions are given for the interactions between the QM and MM portion...

متن کامل

Parametrization of an Orbital-Based Linear-Scaling Quantum Force Field for Noncovalent Interactions

We parametrize a linear-scaling quantum mechanical force field called mDC for the accurate reproduction of nonbonded interactions. We provide a new benchmark database of accurate ab initio interactions between sulfur-containing molecules. A variety of nonbond databases are used to compare the new mDC method with other semiempirical, molecular mechanical, ab initio, and combined semiempirical qu...

متن کامل

First principles force field for metallic tantalum

We develop a many-body force field (FF) for tantalum based on extensive ab initio quantum mechanical (QM) calculations and illustrate its application with molecular dynamics (MD). As input data to the FF we use ab initio methods (LAPW-GGA) to calculate: (i) the zero temperature equation of state (EOS) of Ta for bcc, fcc, and hcp crystal structures for pressures up to ∼500 GPa, and (ii) elastic ...

متن کامل

Application of a simple quantum chemical approach to ligand fragment scoring for Trypanosoma brucei pteridine reductase 1 inhibition

There is a need for improved and generally applicable scoring functions for fragment-based approaches to ligand design. Here, we evaluate the performance of a computationally efficient model for inhibitory activity estimation, which is composed only of multipole electrostatic energy and dispersion energy terms that approximate long-range ab initio quantum mechanical interaction energies. We fin...

متن کامل

Orientation as a probe of photodissociation dynamics

Molecular chlorine was photodissociated in the wavelength range 270È400 nm with 2 linearly polarized light, and the orientation of the excited-state chlorine atom Cl*(2P1@2) was measured by 2] 1 resonance enhanced multiphoton ionization (REMPI) using circularly polarized light. The degree of orientation of the Cl* photofragment is found to oscillate as a function of photolysis wavelength. The o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry. A

دوره 111 18  شماره 

صفحات  -

تاریخ انتشار 2007